Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Open Forum Infect Dis ; 9(7): ofac222, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1931883

ABSTRACT

The lower efficacy of the COVID-19 mRNA vaccines in 5-11 year old children was unexpected. Neutralizing antibody titers elicited by the vaccines in children, adolescents, and young adults suggest that the lower efficacy is not due to the lower dosage. Confirming the efficacy of these vaccines in children, determining if mRNA vaccination strategies are less effective in younger children, as well as optimizing the dosage, dosing intervals, and number of doses needed in children, adolescents, and young adults are critical to improve vaccination strategies for these populations going forward.

2.
Immun Inflamm Dis ; 10(4): e592, 2022 04.
Article in English | MEDLINE | ID: covidwho-1763237

ABSTRACT

BACKGROUND: To understand the kinetics of immune responses with different dosing gaps of the AZD1222 vaccine, we compared antibody and T cell responses in two cohorts with two different dosing gaps. METHODS: Antibodies to the SARS-CoV-2 virus were assessed in 297 individuals with a dosing gap of 12 weeks, sampled 12 weeks post second dose (cohort 1) and in 77 individuals with a median dosing gap of 21.4 weeks (cohort 2) sampled 6 weeks post second dose. ACE2-blocking antibodies (ACE2-blocking Abs), antibodies to the receptor-binding domain (RBD) of  variants of concern (VOC), and ex vivo T cell responses were assessed in a subcohort. RESULTS: All individuals (100%) had SARS-CoV-2-specific total antibodies and 94.2% of cohort 1 and 97.1% of cohort 2 had ACE2-blocking Abs. There was no difference in antibody titers or positivity rates in different age groups in both cohorts. The ACE2-blocking Abs (p < .0001) and antibodies to the RBD of the VOCs were significantly higher in cohort 2 compared to cohort 1. 41.2% to 65.8% of different age groups gave a positive response by the hemagglutination assay to the RBD of the ancestral virus and VOCs in cohort 1, while 53.6%-90% gave a positive response in cohort 2. 17/57 (29.8%) of cohort 1 and 17/29 (58.6%) of cohort 2 had ex vivo interferon (IFN)γ ELISpot responses above the positive threshold. The ACE2-blocking antibodies (Spearman's r = .46, p = .008) and ex vivo IFNγ responses (Spearman's r = .71, p < .0001) at 12 weeks post first dose, significantly correlated with levels 12 weeks post second dose. CONCLUSIONS: Both dosing schedules resulted in high antibody and T cell responses post vaccination, although those with a longer dosing gap had a higher magnitude of responses, possibly as immune responses were measured 6 weeks post second dose compared to 12 weeks post second dose.


Subject(s)
COVID-19 , Vaccines , Antibodies, Viral , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunity , Kinetics , SARS-CoV-2 , Sri Lanka
SELECTION OF CITATIONS
SEARCH DETAIL